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is given.
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Recently, Resonant Inelastic X-ray Scattering (RIXS)
at the transition-metal L and M edges has attracted con-
siderable attention [1–4]. In this technique, the incoming
X-ray with energy ~ω excites an electron from the 2p
(L edge) or 3p (M edge) core level into the 3d valence
shell. The energy ~ω′ of the outgoing X-ray resulting
from the radiative transition from the valence shell to
the core level is measured. Since the final state does
not contain a core hole, the energy lost by the scattered
photon is directly related to excitations created in the
valence shell. The use of a particular resonance makes
RIXS chemically selective. Combined with the bulk sen-
sitivity, RIXS can provide insight into the electronic and
magnetic properties of, for example, complex and nanos-
tructured materials that might be inaccessible with non-
resonant techniques. Recently, this technique has been
used to study dd transitions in high-Tc superconductors
and related materials [1, 2], and spin flips in NiO [3]. Al-
though the spectral line shape of RIXS at the transition-
metal L and M edges can often be calculated with nu-
merical methods [4], the analytical understanding of this
spectroscopy is still limited. In this Letter, we use an ef-
fective scattering operator approach to gain insight into
the strength of transitions, such as the elastic peak and
spin-flip processes and demonstrate how to use the po-
larization and angular dependence to selectively probe
particular final states.

RIXS is generally well described by the Kramers-
Heisenberg equation [4]

I(ω, ω′) =
∑

f

|Af (ω)|2δ(~ω + Eg − ~ω′ − Ef ),

where we denote ground and final states by g and f , re-
spectively. For dipolar transitions, the scattering ampli-
tude is given by Af (ω) = 〈f |e′∗·rG(ω)e·r|g〉, where e and
e′ are the polarization vectors of the incoming and outgo-
ing photon, respectively. The intermediate state Green’s
function is given by G(ω) =

∑

n(~ω−En + iΓ/2)−1 with
En the intermediate-state energies and Γ the broadening
due to the finite lifetime of the core hole.

In order to write the scattering amplitude in terms
of an effective dd operator, Luo, Hannon, and Tram-
mell [5] applied a fast-collision approximation to the
intermediate-state propagator. In their derivation, they
included the fact that the absorption spectrum is split
into two distinct peaks due to the large core-hole spin-
orbit coupling. Within this approximation, the Green

function can be written as G
±

(ω) = (~ω−Ej± +iΓ/2)−1,

where Ej± is the mean energy for a spin-orbit split edge

with j± = 3

2
, 1

2
for transition-metal ions. Using spherical

tensor analysis, Luo et al. [5] were able to derive the
scattering amplitude for a particular absorption edge j±

A±
f (ω) = P 2

2p3d

2
∑

Q=0

Q
∑

q=−Q

G
±

(ω)T ∗
Qq(e, e′)〈f |W±

Qq |g〉,

where P2p3d is the reduced matrix element between
the 2p core level and the 3d valence shell. This result
describes the RIXS as an effective dd transition made by
the operator W±

Qq weighted by the polarization depen-

dence TQq(e, e′) = 3(−1)1+Q
∑

q1q2
e′q2

eq1
CQq

1q1 ,1q2
CQ0

11,11

where CQq
lm,l′m′ is a Clebsch-Gordan coefficient. W±

Qq
is a one-particle tensor operator of rank Q. The
values of Q = 0, 1, 2 follow from the combination
of the two dipolar transitions, which are tensors
of rank 1. The components of the operator are
q = −Q, . . . , Q. The operator can be expressed as W±

Qq =
∑

m,sz ,∆m,∆mz
a±

Qq(m, sz, ∆m, ∆sz)dm+∆m,sz+∆sz
d†msz

,

where q = ∆m + ∆sz, a±
Qq is a coefficient that depends

on the value of j±, and d†msz
creates an electron in

the 3d orbital with orbital moment m = 0,±1,±2 and
spin sz = ± 1

2
=↑, ↓. The W±

Qq operate on holes since
the absorption process first places an electron in the
valence shell (2p → 3d) and the subsequent deexcita-
tion (3d → 2p) removes an electron. The scattering
operator is expressed as a combination of orbital- and
spin-dependent tensor operators of rank Q [5, 6], such
as, the number of holes n the spin-orbit coupling L · S
(Q = 0), the obital moment L, and the spin S (Q = 1).
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The result of Luo, Hannon, and Trammell [5] has been
used in resonant X-ray scattering (RXS) where |f〉 = |g〉.
In this case, no angular momentum is transferred to the
system, and only the q = ∆m + ∆sz = 0 components
of the scattering operators contribute to the intensity.
For RXS, the intensities of the Bragg peaks are propor-
tional to the ground-state expectation value of an oper-
ator, 〈g|W±

Q0
|g〉. However, apart from establishing that

the operators are nonzero, often there is no need to cal-
culate the expectation value of the operators. In RIXS,
on the other hand, the W±

Qq cause the scattering of holes,
and it is useful to establish how the intensities of the fi-
nal states depend on the polarization geometry. To find
these, we need to know what transitions are made by
the operators W±

Qq in point-group symmetries relevant
for transition-metal compounds.

Let us first discuss the scattering operators in a quali-
tative way, before giving detailed expression of the W±

Qq .

The operator W±
Qq transfers a total angular momentum

q = ∆m +∆sz to the solid, which can be used to change
the orbital moment by ∆m or the spin by ∆sz. We
can distinguish the following situations: the spin is un-
changed, giving ∆sz = 0 and ∆m = q, or a spin is flipped
where ∆sz = ±1 and ∆m = q ∓ 1. The possibilities for
different q values are summarized in Fig. 1(a). Note
that |q| ≤ Q and Q = 0, 1, 2. To understand the RIXS
in transition-metal compounds, we prefer a basis set that
better reflects the lower local symmetries resulting from
solid-state effects. The effect of the scattering operator is
best understood within a basis that is close to the atomic
orbitals. This also leads to the simplest expressions for
the scattering operators with real coefficients. To ob-
tain eigenstates of the crystal field in point-group sym-
metries common for transition-metal compounds, such
as Oh, D4h and Td, we combine the m = ±2 compo-

nents, d†
2±sz

= 1√
2
(d†2sz

± d†−2sz
). Note that the atomic

orbitals with m = ±1 are degenerate in these symme-
tries. The creation operator in the new basis set is now
d†αsz

with α = 0,±1, 2±. The index α denotes an atomic
orbital for α = 0,±1 and a linear combination of atomic
orbitals for α = 2±. The new orbitals are related to
the real 3d orbitals, d†

0sz
= d†

3z2−r2,sz

, d†
2+sz

= d†x2−y2,sz

,

d†
2−sz

= id†xy,sz
, and d†±1,sz

= 1√
2
(−id†yz,sz

±d†zx,sz
). Typ-

ical energy splittings due to a crystal field are given in
Fig. 1(b).

Figure 1(d) shows how this lower-symmetry basis set
can be related to the scattering process. The situation is
equivalent to atomic orbitals except when the 2± orbitals
are involved. As an example, let us take the situation
where α = 1, and the scattering operator increases the
orbital moment by ∆m = 1, see Fig. 1(d). The hole is
then scattered into the atomic orbital with m = 2. How-
ever, this is not an eigenstate of the crystal field and,

since d†2sz
= 1√

2
(d†

2+sz

+ d†
2−sz

), the hole scatters with

equal probability into the 2+ (x2 − y2) and 2− (xy) or-
bitals. Let us now consider another example where we
add ∆m = 1 to the 2± orbitals. The 2± orbitals are a

orbital

spin
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FIG. 1: (color online) (a) Changes in ∆m and ∆sz that can
be made for a total angular momentum q = ∆m + ∆sz. (b)
Typical energy splittings of one hole in a 3d orbital in the
presence of a crystal field in Oh and D4h symmetry. (c),(d)
The effective transition operator W±

Qq scatters holes from a
state with orbital index α and spin sz to a state with index
α∆m and spin sz + ∆sz. To obtain the corresponding index
α∆m, we first determine what atomic orbitals are contained
in α. Note that α = 0,±1 are atomic orbitals with m = 0,±1
and that α = 2± is a linear combination of atomic orbitals
with m = ±2. Addition of ∆m changes the orbital moment of
the hole from m to m+∆m. Therefore, the final state indices
always correspond to atomic orbitals, i.e., α∆m = m + ∆m.
Note, however, that if α∆m = ±2, the hole ends up in the 2±

orbitals since d
†
±2,sz

= 1√
2
(d†

2+sz

±d
†
2−sz

). Note this schedule

only applies to ∆m 6= 0.

linear combination of the atomic orbitals with m = ±2.
Addition of ∆m = 1 to the m = 2 is not possible. Ad-
dition of ∆m = 1 to m = −2 leads to scattering of the
hole into an atomic orbital with m = −1. Therefore,
for ∆m = 1 a hole in the x2 − y2 orbital or xy orbital
scatters with equal probability into the yz and zx or-
bitals. For ∆m = 0, we do not expect orbital scattering
for atomic orbitals. However, within crystal-field symme-
tries, transitions can be made for the 2± orbitals. If the
orbital part of a tensor operator has an odd rank, holes
in the 2± orbital scatter into 2∓ orbitals. The indices are
α0 = 0,±1, 2∓ for α = 0,±1, 2±. If the orbital part of a
tensor operator has an even rank, no scattering occurs.

The power in this approach is to understand how one
can selectively probe the different scattering operators
W±

Qq using the polarization dependence TQq. For Q = 0,

the polarization dependence is given by T00 = e′∗ · e and
the scattering operator is

W±
00 =

∑

αsz

{(j± +
1

2
)nαsz

± µszdα0sz
d†αsz

}

±
√

2
∑

α

(a1
αdα1↓d

†
α↑ − a−1

α dα−1↑d
†
α↓), (1)

where µ = 0,±1, 2 for α = 0,±1, 2±. The coefficients
aq

α result from factors due to the step-up and step-
down operators and the normalization of the wavefunc-
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tions and are a±1
α = ±

√
3

2
,± 1

2
,− 1

2
for α = 0, 2+, 2−,

a1
1 = a−1

−1 = 1√
2
, and a±1

∓1 = ±
√

3

2
. From the first

term on the right-hand side, it is clear that W±
00 will

always give elastic scattering with an intensity propor-
tional to the number of holes in the ground state squared
(j± + 1

2
)2|〈g|

∑

αsz

nαsz
|g〉|2. Note that the intensity is

weaker at the j− edge compared to the j+ edge. This
elastic contribution is often eliminated by choosing the
polarizations such that e′∗ ·e = 0. For example, for a 90◦

scattering angle with e in the scattering plane [ϕ = 0, see
Fig. 2(a)], the incoming polarization vector e is perpen-
dicular to both outgoing polarization vectors e′

1 and e′2.
By turning e out of the scattering plane, T00 becomes
non zero and an elastic peak appears. This is particu-
larly dominant for early transition-metal compounds as
was demonstrated for TiO2 by Harada et al. [7]. How-
ever, W±

10 and W±
20 also contribute to the elastic line. For

example,

W±
10=

∑

αsz

{−(j± +
1

2
)
µ

2
dα0sz

d†αsz
∓ 2

3
(µ2 − 1)sznαsz

}

∓
√

2

3

∑

α

{(2µ1 + 1)a1
αdα1↓d

†
α↑ − (2µ−1 − 1)a−1

α dα−1↑d
†
α↓},

where µq = (−q)µ−1µ. The intensity of the elastic peak
arising from the second term on the right-hand side is
1

9
|〈g|(2Qz+1)Sz|g〉|2, where Qz = µ2−2 is the quadrupo-

lar moment. This is usually significantly smaller than the
intensity (j± + 1

2
)2|〈g|nh|g〉|2 due to the W±

00 term. In

particular, it is zero for TiO2, since Sz = 0 for the 3d0

ground state, consistent with experiments [7].

In more complex systems, a local αsz → αsz tran-
sition is not necessarily elastic due to band effects. In
the literature, there has been controversy whether the
RIXS data on the ladder compound NaV2O5 should be
ascribed to a transition between the bonding and anti-
bonding states of the xy orbital of the two vanadium
atoms on a rung of the ladder or to a local xy → yz/zx
crystal-field transition [8]. In the 90◦ scattering geom-
etry that was used experimentally [8], the transitions
xy → xy are strongly surpressed since the W±

00 scat-
tering operator does not contribute to the RIXS cross
section. Using the expressions for the scattering opera-
tors, it can be shown that, at the L3 edge, the intensity
of the xy → yz/zx transition is about six times larger
than the xy → xy transition. In addition, the presence
of a strong xy bonding-antibonding transition should be
accompanied by the presence of a strong elastic peak,
which results from the same xy → xy scattering process.
However, this is not observed experimentally [8].

De Groot, Kuiper, and Sawatzky [9] demonstrated nu-
merically that spin-flip processes (∆sz = ±1), that are
not accessible with low-energy optical spectroscopy, can
be obtained with RIXS. Let us first consider the situation
where the orbital does not change, i.e., ∆m = 0. This
can be achieved by the step operators for the spin S±1,
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0

2

4

6

8

10

12

In
te

ns
ity

����
o
�

�

����
o
�

�

�����
o
�

�

�����
o
�

�

90 90 900 0 0 045 45 45 45

yz/zx� x
2
�y

2
�

xy�

yz/zx�

(3z
2
�r

2
� x3)(3z

2
�r

2
� x15/4)(b)

e'

�

�

x

y

z

2

e k'

k

e'
1(a)

FIG. 2: (color online) (a) A typical 90◦ scattering geometry.
(b) RIXS intensities as a function of the angle θ of the incom-
ing radiation with the surface normal and the angle ϕ of the
incoming polarization vector with the scattering plane for a
ground state of a hole in the x2 − y2 ↑ orbital.

which are contained in W±
1,±1. For q = ±1, we have

W±
1q =

∑

αsz

{j± +
1

2
± 2

3
(2µq + q)sz}aq

αdαqsz
d†αsz

∓
∑

α

{q
√

2

6
(µ2 − 4)dα, q

2
d†

α,− q

2

− 2q√
3
a2q

α dα2q ,− q

2
d†

α, q

2

}

where a±2
α = ± 1√

2
, 1√

2
,∓ 1√

2
for α = 0, 2+, 2−, a2

1 =

a−2
−1 = 0, and a2

−1 = a−2
1 =

√

3

2
. The polarization

dependence for these operators is given by T1q(e, e′) =
− 3

2
i(e′∗ × e)q. The second term on the right-hand side

is a spin flip process. The coefficient q
√

2

6
(µ2 − 4) shows

that spin-flip processes for holes in the x2 − y2 and xy
orbitals (µ = 2) are prohibited. This directly shows why,
in numerical calculations for a Cu2+ ion [9], spin flips are
absent in D4h symmetry where the ground state has a
hole in the x2 −y2 orbital, but are present in Oh symme-
try where there is also hole density in the 3z2−r2 (µ = 0)
orbital. Also in NiO, which has two holes in the x2−y2 ↑
and 3z2−r2 ↑ orbitals, a spin-flip is expected for the hole
in the 3z2−r2 orbital only. In recent RIXS measurements
at the M threshold by Chiuzbăian et al. [3], this spin-
flip feature overlapped with the elastic Rayleigh peak.
They therefore considered spin flips in combination with
a crystal field transition. These processes occur in both
W±

00 and W±
10. However, in the 90◦ scattering geometery

used, the contribution from W±
00 is zero. The terms in

W±
10 giving this scattering are 1√

6
d1↓d

†
0↑ + 1√

2
d−1,↓d

†
2+↑.

Note that the spin flip intensity arising from the α = 2+

(x2 − y2) is larger than that of the α = 0 (3z2 − r2).
Significant work using RIXS at the L and M thresholds

has been done on high-Tc superconductors and related
compounds [1, 2]. Let us consider the typical experimen-
tal situation with linearly polarized incoming X-rays and
no polarization analysis of the outgoing x-rays. We take
a 90◦ scattering angle, see Fig. 2(a). The incoming po-
larization vector is e = cosϕ(− cos θx + sin θz) + sin ϕy,
where x,y, and z are the Cartesian unit vectors with y
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FIG. 3: (color online) Density plot of the RIXS intensities at
the L3 edge for a 90◦ scattering geometry, see Fig. 2(a), as
a function of the angle θ of the incoming radiation with the
surface normal and the angle ϕ between e and the scattering
plane. The ground state has a hole in the x2 − y2 ↑ orbital.
The intensities for scattering into x2 −y2 ↓ and xy ↓ are zero.

perpendicular to the scattering plane; θ is the angle of
the incoming x-ray with the surface normal and ϕ is the
angle of the polarization vector with the scattering plane,
see Fig. 2(a). The outgoing polarization vectors are then
e′1 = sin θx + cos θz and e′

2 = y. We take a ground state
of a hole in the x2−y2 ↑ orbital, which gives a good idea of
the dd transitions observed in Cu L- and M -edge RIXS.
The angular dependence for final states with a hole in the
αsz orbital follows from

∑

Qq(−1)q〈αsz |T ∗
QqW

±
Qq |2+ ↑〉.

It is straightforward to obtain the TQq from the defini-
tion. Using the exact expressions for W±

Qq , one finds two
distinct angular dependencies:

f(θ, ϕ) = (a sin 2θ + b cos2 θ) cos2 ϕ + (c sin θ + d) sin2 ϕ

g(θ, ϕ) = a(cos4 θ cos2 ϕ + cos2 θ sin2 ϕ). (2)

The function f(θ, ϕ) gives the intensities to scatter the
hole into x2 − y2 ↑, 3z2 − r2 ↑, xy ↑, and yz/zx ↓ with
coefficients a, b, c, d = 9

4
, 9

4
, 9

4
, 9; 3

4
, 3

4
, 3

4
, 3; 9

16
, 9, 9, 9

4
and

9

16
, 9

4
, 9

4
, 9

4
, respectively. The angular dependencies of the

intensities to scatter into 3z2−r2 ↓ and yz/zx ↑ are given
by g(θ, ϕ) with coefficients 3 and 45

4
, respectively, see Fig.

2(b). The intensities of reaching x2 − y2 ↓ and xy ↓ are
zero. Figure 3 shows a density plot of the intensities at
the L3 or M3 edge as a function of θ and ϕ, where the
orbital energies with respect to x2−y2 are E3z2−r2 = 0.4
eV, Exy = 1.2 eV, and Eyz/zx=1.8 eV. These are typ-
ical crystal field splittings [2], where overlap has been
avoided for clarity. We take the energy needed to flip
a spin 0.15 eV. As is clear from Fig. 3, employing the
strong angular and polarization dependence allows a bet-
ter identification of the spectral features. First, the in-
tensity for transitions with a spin flip is generally lower
than for those without because that transitions without
spin flip are preceded by the coefficient (j+ + 1

2
)2 = 4,

which is generally larger than the coefficients determin-
ing the spin-flip processes. Also, as expected, we do not
find a spin-flip process for the x2 − y2 orbitals. How-
ever, also no transition is found to the xy ↓ state. This
transition would result from the W±

2,−1 operator, but the

spin-flip is preceded by the coefficient 1√
6
µ(µ2−4) and is

therefore zero. The intensities are zero for θ = 90◦ and
ϕ = 0, because the aborption is zero for these angles.
When turning the polarization vector out of the scatter-
ing plane ϕ = 0 → 90◦, we find a strong increase in the
elastic peak. Note, however, that taking e·e′ = 0 (ϕ = 0)
does not reduce the elastic peak entirely to zero, due to
the contributions from W±

10 and W±
20.

In conclusion, it has been demonstrated how the use of
an effective scattering operator can strongly enhance our
understanding of the angle and polarization dependence
of the resonant inelastic x-ray scattering cross section.
Analytical expressions have been derived that determine
the conditions for spin-flip processes and the intensity of
the elastic scattering in the RIXS cross section.
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